原著論文

ニホンジカの個体群動態の推定と将来予測 (兵庫県淡路島 2012 年)

松本 崇 1,2*#· 岸本康誉 1,2##· 太田海香 3· 坂田宏志 1,2

1兵庫県森林動物研究センター・2兵庫県立大学自然・環境科学研究所・3横浜国立大学

要点

- ・1999 年から 2011 年までに入手されたデータから、兵庫県淡路島に生息するニホンジカの自然増加率や個体数を、階層ベイズモデルを構築し、マルコフ連鎖モンテカルロ法によって推定した。
- ・推定は、銃猟時の目撃効率、糞塊密度、狩猟捕獲数、有害捕獲数のデータを基に、それぞれのデータの誤差変動を組み込んだモデル(坂田ほか 2012)を改良して用いた。
- ・改良点は以下の3点である。
- ・増加率には密度効果を導入するとともに、毎年異なった値を推定した。また、その変動を考慮して将来予測をおこなった。
- ・狩猟と有害捕獲による捕獲率は、県の施策が強化された 2010 年以後と 2009 年以前は 異なる率を推定した。
- ・目撃効率と生息密度の係数に関しては、出猟カレンダーの報告内容を変更した 2002 年 以後と 2001 年以前は異なるものとして推定した。
- ・自然増加率の中央値は、もっとも低い年(2005年)で14.3%、もっとも高い年(2007年)で19.8%、と推定された。
- ・推定個体数は、2010 年に比べ減少し、2011 年末の段階で中央値で 4,307 頭(90%信頼 限界では $2,669\sim7,740$ 頭)と推定された。
- ・さらに、3 通りの捕獲計画(今後、継続的に毎年 800 頭捕獲、1,000 頭捕獲、1,500 頭捕獲)に基づく個体数の将来予測の結果、中央値でみると、いずれの捕獲計画においても個体数は減少すると予測された。しかし、90%信頼区間でみてみると 800 頭捕獲、および 1,000 頭捕獲の場合、増加する可能性もあると予測された。

key words: 個体数管理 自然増加率 ベイズ推定 マルコフ連鎖モンテカルロ法 個体数推定

* 連絡先:〒669-3842 兵庫県丹波市青垣町沢野940 兵庫県森林動物研究センター

e-mail: taka4matu@gmail.com

現所属: ㈱野生鳥獣対策連携センター, ## 現所属: ㈱野生動物保護管理事務所

1. はじめに

この論文では、兵庫県淡路島におけるニホンジカ Cervusnippon(以下、シカ)の保全と管理の意思決定に資するため、自然増加率や生息個体数などの推定を行う。さらに、目標捕獲数を設定する際の判断材料を提供するために、複数通りの捕獲計画を設定し、それぞれの捕獲計画に基づくシカの将来的な個体数の変動を予測する。

推定には、兵庫県で体系的に収集している 1999 年から 2011 年までのデータを用いる。具体的には、兵庫県森林動物研究センターが行っている、尾根上の 1km 当たりのシカの糞塊数(糞塊密度)と狩猟登録者の報告に基づく銃猟時の平均目撃数(目撃効率)、狩猟による捕獲数、有害による捕獲数である。

自然増加率や個体数の推定は、上記のデータとの時系列的な関係を記述する階層ベイズモデルを構築し、マルコフ連鎖モンテカルロ法によって推定する。これらのモデルの中では、自然増加率や個体数のほか、観測データと個体数、または密度との比率を表す係数に加え、複数の観測データに含まれる誤差変動を明示的に組み込んだ上で、その誤差の大きさも推定する。これらの手法は、兵庫県(岸本ほか 2012)や島根県、全国(環境省自然環境局生物多様性センター 2011)のニホンジカの個体数推定に適用されており、本稿では、それを改良したモデルを用いて推定する。

モデルの主な改良点は以下の 3 点である。1) 増加率には密度効果を導入するとともに、毎年異なった値を推定した、2) 狩猟と有害捕獲による捕獲率は、県の施策が強化された 2010年以降と 2009年以前は異なる率を推定した、3) 目撃効率と生息密度の係数は、出猟カレンダーの報告内容を変更した 2002年以降と 2001年以前は異なるものとして推定した。

2. 方法

対象とする期間と地域

対象期間は 1999 年から 2011 年までの 13 年間、対象地域は兵庫県淡路島とする。生息密度の指標の一つである糞塊密度の調査を行っているのが年末のため、生息数も年末の値を推定する。したがって分析に際しては、年度ではなく 1 月から 12 月までで年を区切る。

用いたデータ

推定には、次にあげるデータを用いた。

- 有害捕獲数 (年度) i_yugai[i]: i 年度の有害捕獲許可による捕獲数。銃猟とわな猟の合計値を生息数の動向を反映する指標として用いる。i=1999,2000,…,2010,2011。
- 糞塊密度 $\operatorname{fun_d[i]}: i$ 年度の 10 月下旬から 11 月上旬に所定のラインセンサスにより確認 した 1km あたりの平均糞塊数。生息密度の動向を反映する指標として用いる。 $i=1999,2000,\cdots,2010,2011$ 。
- 目撃効率 spue[i]: i 年度に狩猟登録者から得られた銃猟による狩猟時の目撃効率。生息密度の動向を反映する指標として用いる。i=1999,2000,…,2010,2011。
- 狩猟捕獲数 rca[i]:i年度の狩猟による捕獲数。銃猟とわな猟の合計値を生息数の動向を反

映する指標として用いる。狩猟捕獲数は年度単位で集計される。狩猟期間は 11 月 15 日 から 3 月 15 日までのため、本論文では、i 年度に狩猟で捕獲されたシカは、全て i+1 年に捕獲されたとみなして、年度単位のデータを年単位のデータに変換し推定に用いた。 $i=1999,2000,\cdots,2011$ 。

有害捕獲数 (年) $y_{ca}[i]$: i 年度の 1 月から次年度の 12 月までの有害捕獲許可による捕獲数。 $i=1999,2000,\cdots,2010$ 。

森林面積 f_area:兵庫県本州部の森林面積。生息密度の期待値を計算する際に用いる。 以上の方法で収集したデータを表1に示す。

表 1	田した	:データ
衣 !	用いた	エーブ

年	有害捕獲(年度)	糞隗密度	目撃効率	狩猟捕獲数(年)	有害捕獲数(次年)	森林面積
#	i_yuga i	fun_d	spue	r_ca	y_ca	f_area
1999	88	41. 60	1. 79	183	109	336. 86
2000	103	67. 07	2. 53	135	134	336. 86
2001	131	70. 02	2. 40	178	151	336. 86
2002	144	52. 92	1. 69	219	184	336. 86
2003	186	48. 74	1. 74	319	136	336. 86
2004	134	47. 86	1. 70	264	206	336. 86
2005	268	62. 72	2. 30	232	325	336. 86
2006	349	65. 90	1. 40	277	443	336. 86
2007	428	37. 47	1. 16	259	397	336. 86
2008	501	35. 95	1. 55	415	495	336. 86
2009	320	60. 37	1. 14	561	494	336. 86
2010	494	58. 88	1.85	1496	481	336.86
2011	490	55. 29	1.83	1312		336. 86

推定する変数

以下の考え方に基づいて、 lire[i]、lnk、pr[t]、py[t]、lr_spue[t]、lr_fun、lnNins、v_spue、v_fun、v_ryo、v_yugai(ここで i=1999,2000,…,2010、t=1,2)の計 25 変数について事前分布を設定して推定し、目的である自然増加率や個体数を推定する。推定変数の初期値と事前分布は表 2 のとおりである。各推定変数の定義と事前分布を設定する際の考え方は、以下のとおりである。

- 1. 内的自然増加率の自然対数値 lire[i]:毎年異なった値を推定した。事前分布は、環境省の特定哺乳類生息動向調査の個体数推定(環境省生物多様性センター 2011)に採用された分布を用いる。また、exp(lire)を内的自然増加率 ire とする。
- 2. 環境収容力の自然対数値 lnk: 環境収容力 k=exp(lnk)とし、k の期待値が 100、分散が 1 の対数正規分布を事前分布とした。文献データからは 118 頭/km(知床半島)、あるいは 72 頭/km(金華山) で個体数の急激な減少が観測されている(Ito 1986, Kaji et al 2004)。

この事前分布の 90%限界は 11.6 頭/km~315.8 頭/km で広めの範囲を取るようにした。

- 3. 生息密度と目撃効率の比率を示す係数(目撃係数)の自然対数値 lr_spue[t]:事前分布は正規分布を仮定し、事前の情報は十分にないため、その分散は大きめに設定した。データの元になる出猟カレンダーによる報告内容が、シカに関する項目のみであった 2001 年以前と、イノシシに関する項目も含められるようになった 2002 年以降では、報告者の構成や出猟回数や場所等が異なるため、2001 年以前と 2002 年以降の 2 区間に分けて係数を推定することとした。目撃効率と生息密度の係数 rs は exp(lr_spue)をとする。
- 4. 生息密度と糞塊密度の比率を示す係数の自然対数値 lr_fun: 事前分布は正規分布を仮定し、事前の情報は十分にないため、その分散は大きめに設定した。糞塊密度調査の手法は毎年変わらないため、係数自体は毎年変動しないと仮定し、観測モデルにおいて観測誤差を想定するだけにした。生息密度と糞塊密度の比率を示す係数 rf は exp(lr_fun)とする。
- 5. 狩猟による捕獲率(狩猟捕獲率) pr[t]: 狩猟時の捕獲数の生息個体数に対する比率 兵庫県のシカの捕獲に関する施策が強化され狩猟による捕獲に報償費が出されるように なった 2010 年以降と 2009 年年以前では異なる捕獲率を推定した。pr ついては事前情報 がないため、事前分布は事前分布は形状母数 $\alpha=1$ 、形状母数 $\beta=1$ のベータ分布に設定した。
- 6. 狩猟により捕獲された個体を除いた個体数に対する有害捕獲による捕獲率 pry[t]: 有害 捕獲の捕獲率は、

$py[t]=(1-pr[t])\times pry[t]$

となる。また、兵庫県のシカの捕獲に関する施策が強化され、有害捕獲に関する目標が大きく変更された 2010 年以降と 2009 年以前では異なる捕獲率を推定した。pry については事前情報がないため、事前分布は形状母数 $\alpha=1$ 、形状母数 $\beta=1$ のベータ分布に設定した。

- 7. 1年前(2010年)の生息個体数の自然対数値 lnNins:事前分布は正規分布とし、平均値は、昨年に推定した個体数の事後分布の平均値の対数値を用いた。分散は、分布の95%信頼限界が、既存の情報から考えられるおおよその限界値になる値を設定した。具体的には、2010年の狩猟期間に捕獲された個体数、および有害捕獲による捕獲数はそれぞれ1,496頭、494頭であるので、生息数は捕獲数を合計した1,990頭以下を下限にすれば十分であると考え、95%信頼限界の下限が1,303頭となる分散0.5とした。95%信頼限界の上限は20,891頭となるが、現実的に想定できる値を十分にカバーすると考えられる。1999年から2010年までのデータは前回の推定と今回の推定とで2回用いることになってしまう。しかし、前回の推定値と著しく異なる値を公表することは関係者間での合意形成に著しく妨げとなる。したがって、行政機関が公表する個体数推定値としては推定値が前回と著しくずれないようにする方法として、前回の推定値の平均を事前分布の平均として用いた。事前分布の分散は十分に広げ、データが完全に二度使いにならないようにした。
- 8.目撃効率、糞塊密度、狩猟捕獲数、有害捕獲数の期待値からの誤差分散 v spue、v fun、

v_ryo、v_yugai: それぞれ、観測モデルで示す確率分布の誤差分散として観測データから推定する。これらの誤差分散の事前分布は、それぞれ、形状母数、尺度母数ともに 0.01 の逆ガンマ分布を用いた。

9. 各推定変数の初期値は、事前分布の期待値とした。尤度関数の変動部分 v_spue、v_fun、 v_ryo、v_yugai については、それぞれ初期値を 0.01 とした。

表2	推定し	.た変数と	その初期値.	および事前分布
22 4		八人父奴C		いのいずかりか

推定変数	ブロック	初期値	事前分布
lire[i]	1	0. 1789	正規分布(In(1.2)-0.5*0.006826535, 0.006826535)
Ink	1	4. 1052	正規分布(In(100)-0.5*1,1)
<pre>Ir_spue[t]</pre>	1	-2. 3026	正規分布 (In(0.1),5)
lr_fun	1	0. 0000	正規分布 (In(1),5)
pr[t]	1	0. 5000	ベータ分布 (1,1)
py[t]	1	0. 5000	ベータ分布 (1,1)
InNins	1	8. 5611	正規分布 (8.561147,0.5)
v_spue	2	0. 0100	逆ガンマ分布 (0.01,0.01)
v_fun	2	0. 0100	逆ガンマ分布 (0.01,0.01)
v_ryo	2	0. 0100	逆ガンマ分布 (0.01,0.01)
v_yugai	2	0. 0100	逆ガンマ分布 (0.01,0.01)

事前分布の引数は、正規分布(期待値、分散)、逆ガンマ分布(形状母数、尺度母数)、ベータ分布(形 状母数 α 、形状母数 β)を示す。

個体群動態の過程モデル

個体群動態の過程モデルは、Beverton-Holt モデルを採用した。生息個体数は 2010 年を起点として、

翌年の2011年まで個体数を

ß[i]=(ire[i]-1)/(k*f_area) N[i+1]=(ire[i] *N[i]/(1+ß[i] * N[i]))-caa[i] (i=2010 のとき)

1999年までの個体数を

 $\beta[i-1] = (ire[i-1]-1)/(k*f_area)$

 $N[i-1] = (caa[i-1] + N[i]) / (ire[i-1] - \beta[i-1] * (caa[i-1] + N[i]))$

(i=2010, 2009,…,2000 のとき)

のように計算する。

ここで、N[i]は、i年の生息個体数を示す。また、caa[i]は、i年の捕獲数であり、i年度の狩猟捕獲数 $r_ca[i]$ と i年の有害捕獲数 $y_ca[i]$ の合計値である。

2010 年の個体数は N[2010]=round(exp(lnNins))とした。なお、生息個体数は、年末時点

での個体数を想定している。

観測モデル

推定する個体数と観測されるデータとの関係を示す観測モデルは以下のとおりとする。

1. 目撃効率に関する観測モデル

 $\begin{aligned} \log(\text{SPUE[i]}) &= \log(\text{rs} \times \text{N[i]/f_area}) \text{-} 0.5 \times \text{v_spue+e_spue[i]} \\ i &= 1999, 2000, \cdots, 2010, 2011 \end{aligned}$

2. 糞塊密度に関する観測モデル

 $log(fun[i]) = log(rf \times N[i]/f_area) -0.5 \times v_fun + e_fun[i]$ i=1999,2000,···,2010,2011

3. 狩猟捕獲数に関する観測モデル

 $\begin{aligned} &\log(\text{r_ca}\ [i]) = \log(\text{pr}[i] \times \text{N[i]}) \cdot 0.5 \times \text{v_ryo+e_ryo}[i] \\ &i=1999,2000,\cdots,2010,2011 \end{aligned}$

4. 有害捕獲数に関する観測モデル

 $\begin{aligned} &\log(\text{i_yugai [i]}) = \log(\text{py[i]} \times \text{N[i]}) \cdot 0.5 \times \text{v_yugai+e_yugai [i]} \\ &\text{i=1999,2000,} \cdots, 2010,2011 \end{aligned}$

e_spue[i]、e_fun[i]、e_ryo[i]、e_yugai [i]は、誤差変動を示し、それぞれ期待値 0、分散が v_spue、v_fun、v_ryo、v_yugaiの正規分布に従うものとする。

将来予測

個体数の将来予測は、推定された変数の事後分布を用いて以下の 3 通りの捕獲計画に基づいて 2018 年までの個体数を予測した。いずれの捕獲計画においても、2011 年の捕獲数は 1,722 頭、2012 年の捕獲数は 1,500 頭とした。2013 年以降、毎年 1) 800 頭、2) 1,000 頭、および 3) 1,500 頭を捕獲した場合の個体数の予測を行った。

マルコフ連鎖モンテカルロ法

これまで述べたデータとモデルおよび事前分布の設定にもとづいて、マルコフ連鎖モンテカルロ法 (Gilks*et al.*1996) による推定を行った。この推定は SAS/STAT9.3 の MCMC Procedure を用いた (SAS Institute Inc. 2011)。

サンプリング

推定変数を表 2 のとおり 2 つのブロックに分けて、メトロポリス法による独立サンプラーを用いて事後分布をサンプリングした。サンプリング回数については、最初の 100 万回はサンプリングせず、次の 1000 万回のうち 1,000 回に 1 回サンプリングし、計 1 万回のサンプリングを行った。

提案分布は、正規分布とし、実際のサンプリング回数に合わせて 5 万回のサンプリングによる事後分布にもとづいて、Roberts et~al. (1997) の示した最適な採択率 23.4%を目標に $\pm 7.5\%$ の範囲の採択率になるように、スケールと共分散行列のチューニングを行った。

収束判定

収束判定は、有効サンプルサイズ(Kass*et al.* 1998)と Geweke 検定(Geweke 1992)の 2 つの基準で確認した。有効サンプルサイズによる判定では、これが 1,000 以上であること

を基準とした。Geweke 法では、サンプリングされたデータのうち、最初の 1,000 回と最後 の 5,000 回の期待値の差を検定し、棄却水準が 0.01 にならないことを基準とした。

3. 結果

収束

いずれの推定変数においてもサンプリングの際の自己相関はほとんどなく、有効サンプル数は 9,000 を超え、良好なサンプリングができたと判断された。Geweke 検定では、すべての推定変数において基準を上回り収束していると判断された。

推定値

事前分布と事後分布の形状を図1に、得られたデータの観測値と期待値との関係を図2に示した。推定値の要約は表3の通りであった。個体数の年次変動パターンを図3に、増加個体数の年次変動パターンを図4に示した。3通りの捕獲計画(毎年800頭、1,000頭、1,500頭捕獲)に基づく個体数の将来予測を図5に、増加個体数の将来予測を図6に示した。

内的自然増加率と環境収容力以外の変数では、事後分布の幅は事前分布の幅より狭まった (図 1-2~1-10)。しかし、内的自然増加率と環境収容力は、事前分布の幅と事後分布の幅は ほとんど変わらず、事前分布の設定が推定に影響を与えていた(図 1-1, 図 1-2)。

兵庫県淡路島に生息するシカの個体数の中央値は、2011 年は 4,307 頭(90%信頼限界で 2,9669 頭 \sim 7,740 頭)と 2010 年の個体数の中央値(5,257 頭)に比べおよそ 900 頭減少したと推定された(表 $3\cdot1$, 図 3)。

自然増加率の中央値は、1.1429~1.841984までの値をとった(表 3-3)。

環境収容力は中央値で 124.6 頭/km² (90%信頼区間で 53.6 頭/km²~453.3 頭/km²) と推定された (表 3-4)。

目撃係数の中央値は、2001 年以前は 0.2340(90%信頼区間で $0.1350\sim0.3740$)、2002 年以降は 0.1190(90%信頼区間で $0.0302\sim0.1720$)と推定された(表 3-4)。

狩猟捕獲率の中央値は、2009 年以前は 0.0634 (90%信頼区間で $0.0396\sim0.0905$)、2010 年以降は 0.3250 (90%信頼区間で $0.1740\sim0.6010$)、有害捕獲率の中央値は、2009 年以前は 0.0548 (90%信頼区間で $0.0331\sim0.0836$)、2010 年以降は 0.1250 (90%信頼区間で $0.0618\sim0.2820$) となった (表 3-4)。

個体数の将来予測に関しては、中央値でみるといずれの捕獲計画においても、個体数は減少すると予測された(表 3-5、図 5)。毎年 800 頭捕獲する場合、2018 年の予測個体数の中央値は、2011 年のおよそ 3 分の 1 の 245 頭(90%信頼区間で 0 頭~11,867 頭)に、毎年 1,000 頭捕獲する場合、および毎年 1,500 頭捕獲する場合ではいずれも 2018 年の個体数の中央値は 0 頭となった(90%信頼区間 0 頭~10,526 頭;毎年 1,000 頭捕獲; 90%信頼区間 0 頭~6,963 頭;毎年 1,500 頭捕獲;表 3-5、図 5)。ただし、いずれの場合でも信頼幅は広く、90%信頼区間でみると、年間 800 頭捕獲、および 1,000 頭捕獲の場合、増加する可能性もあると予測された。

4. 考察

兵庫県淡路島におけるシカの個体数は、岸本ほか(2012)によると 2001 年~2010 年の期間において一貫して増加傾向にあったものと推定されている。しかし、今回の推定では、2010 年から捕獲の強化を行った結果、中央値でみると 2011 年末の個体数は、前年(2010 年)末に比べ 18%減と初めてシカ個体数が減少したことが示された(図 3)。2011 年の個体数の中央値は 4,307 頭と 8 年前(2003 年)のレベルにまで下がった。2011 年の増加個体数の中央値は 752 頭であり、2012 年以降も年間 800 頭以上捕獲し続ければ、中央値でみる限り個体数は今後も減少し続けると予測される。しかし、予測個体数の 90%信頼区間でみると毎年 800 頭捕獲、および 1,000 頭捕獲の場合増加する可能性もあり、今後も継続的なモニタリングと個体数推定を行いながら注意深く目標捕獲数を決定していく必要がある。

狩猟・有害捕獲率に関しては、捕獲が強化された 2010 年以降とそれ以前、目撃係数に関しては、シカに加えイノシシの目撃数も報告するようになった 2002 年以降と 2001 年以前とで異なるものとして推定した。2010 年以降の捕獲率の中央値は、狩猟捕獲率に関しては 2009 年以前の中央値の 5 倍以上、有害捕獲率に関しても 2 倍を超えた。2002 年以降の目撃係数の中央値は、2001 年以前の中央値に比べおよそ半分と推定された。このように、捕獲目標や報告様式の変更など環境要因の変化により変数の値が異なると予想されるならば、環境要因の変化前後で別の変数として推定する必要がある。本来これらの変数は、環境要因の変化前後だけでなく毎年変動するものである。しかし、ベイズ推定において、データに比して推定する係係数を増やしすぎるとモデルが収束しにくくなる。したがって、本推定においては毎年変化する変数としてではなく、環境要因の変化の前後のみで変化するとして推定する方法が適していると考えられる。

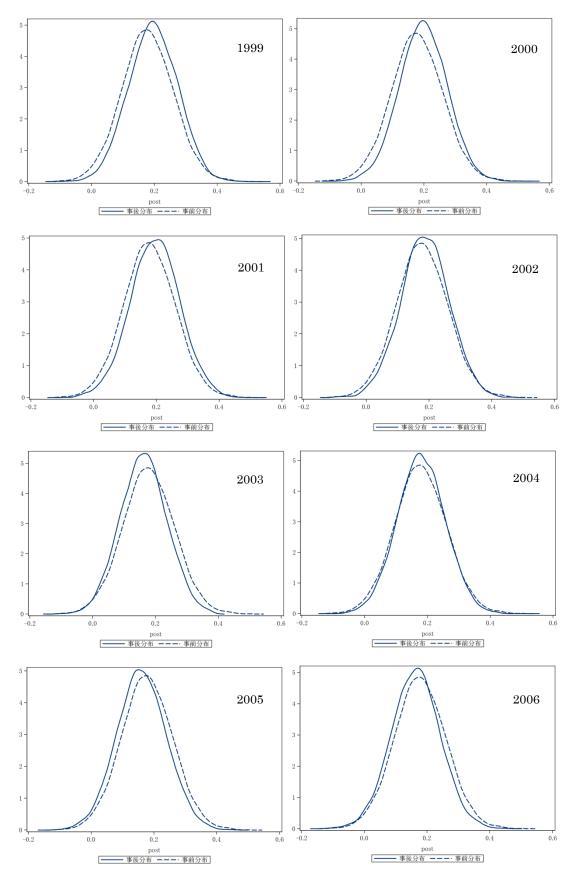


図 1-1 内的自然増加率(log)の事前分布(破線)と事後分布(実線;次頁へ続く)

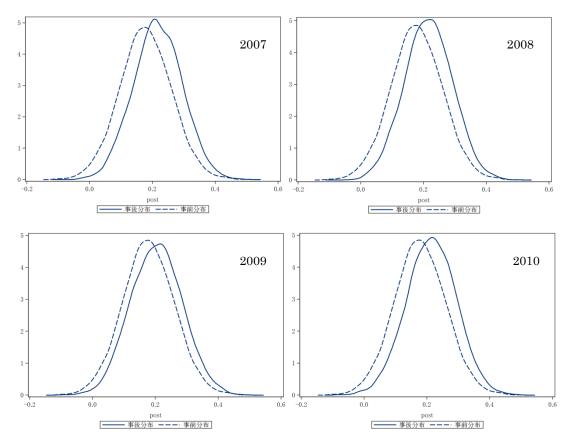


図 1 - 1 内的自然増加率(log)の事前分布(破線)と事後分布(実線;次頁からの続き)

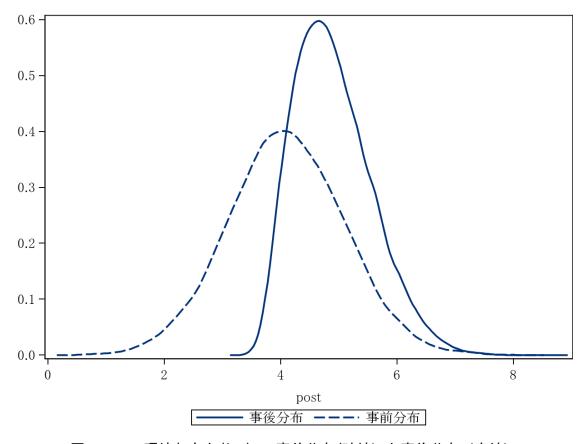


図1-2 環境収容力(log) の事前分布(破線) と事後分布(実線)

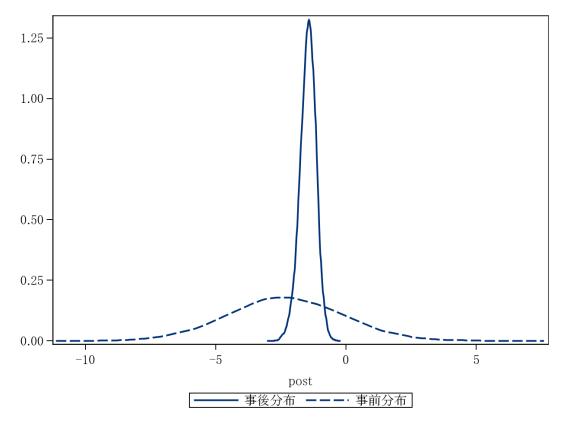


図 1 - 3 2001 年以前の生息密度と目撃効率の比率を示す係数(log)の事前分布(破線)と事後分布(実線)

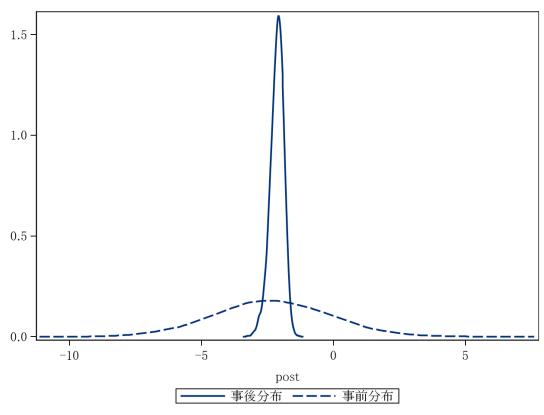


図 1 - 4 2002 年以降の生息密度と目撃効率の比率を示す係数(log)の事前分布(破線)と事後分布(実線)

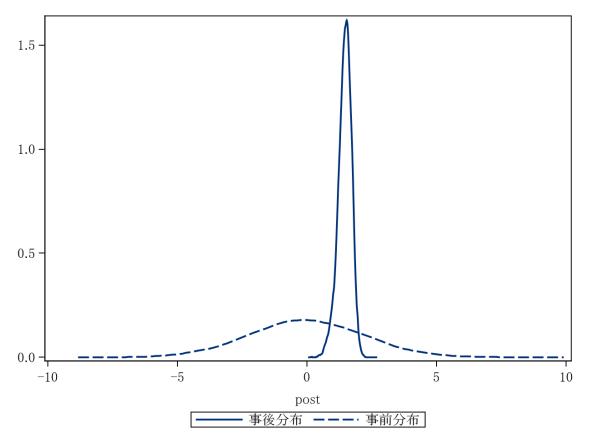


図1-5 生息密度と糞塊密度の比率を示す係数(log) の事前分布(破線)と事後分布(実線)

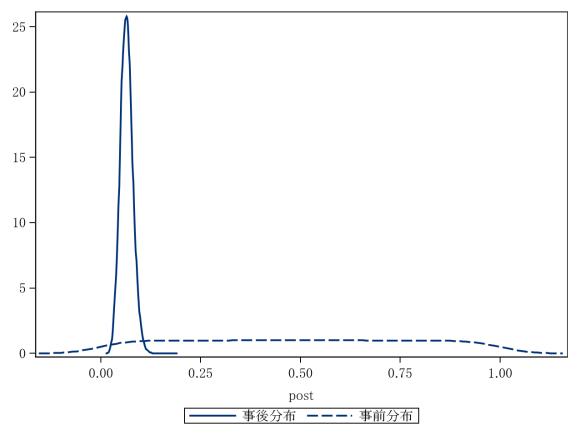


図1-6 2009年以前の狩猟による捕獲率の事前分布(破線)と事後分布(実線)

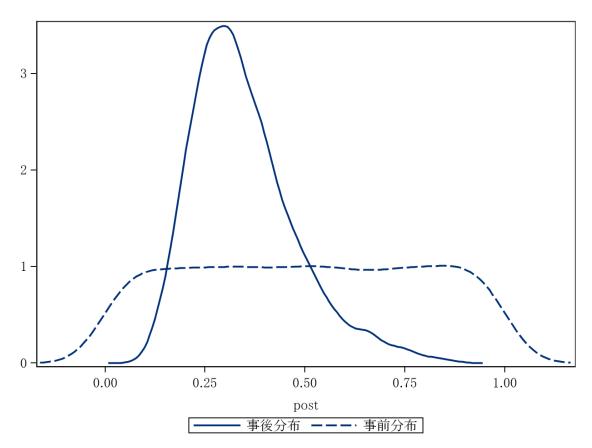


図1-7 2010年以降の狩猟による捕獲率の事前分布(破線)と事後分布(実線)

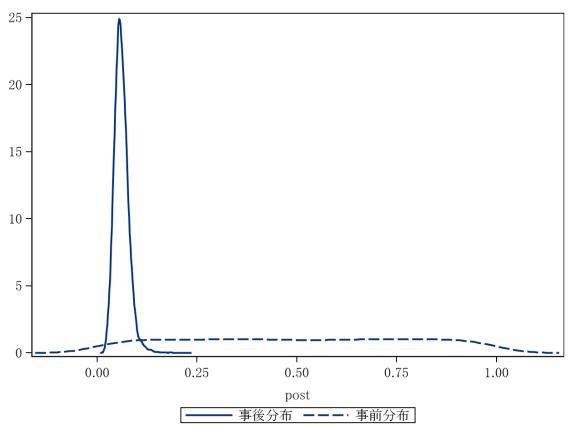


図1-8 2009年以前の有害による捕獲率の事前分布(破線)と事後分布(実線)

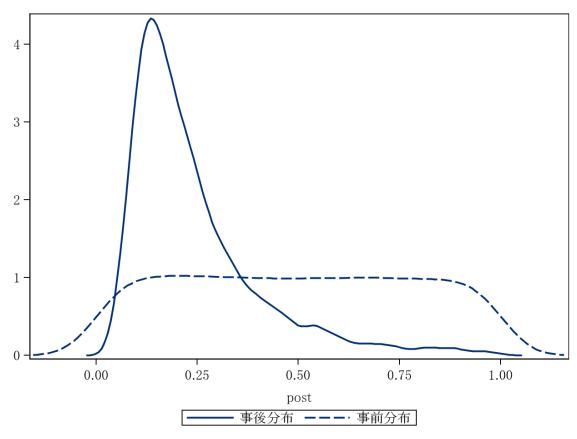


図1-9 2010年以降の有害による捕獲率の事前分布(破線)と事後分布(実線)

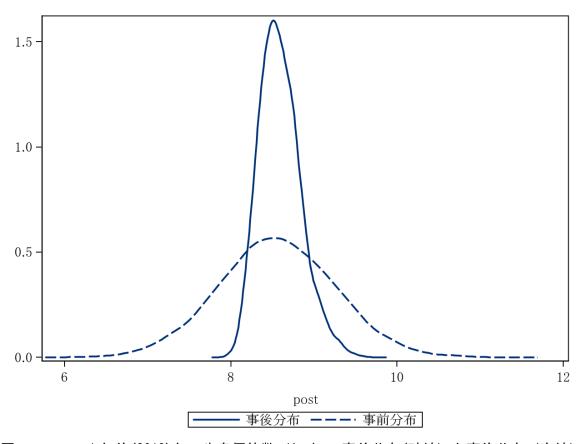


図1-10 1年前(2010)年の生息個体数(log)の事前分布(破線)と事後分布(実線)

推定値の要約

表3-1 個体数の推定値の要約

変数	平均	標準偏差	5 %点	25 %点	50 %点	75 %点	95 %点
個体数 1999	3169	917	2104	2549	2981	3558	4879
個体数 2000	3469	1000	2295	2792	3267	3906	5336
個体数 2001	3846	1078	2568	3113	3634	4319	5854
個体数 2002	4214	1146	2838	3427	3988	4726	6352
個体数 2003	4527	1208	3078	3696	4289	5088	6839
個体数 2004	4723	1263	3209	3851	4478	5295	7062
個体数 2005	5009	1310	3415	4107	4759	5623	7459
個体数 2006	5153	1348	3531	4231	4882	5769	7722
個体数 2007	5164	1393	3499	4207	4893	5787	7794
個体数 2008	5502	1446	3746	4506	5220	6170	8243
個体数 2009	5629	1488	3839	4593	5330	6330	8453
個体数 2010	5566	1533	3713	4494	5257	6291	8521
個体数 2011	4632	1613	2669	3500	4307	5402	7740

表3-2 増加個体数の推定値の要約

変数	平均	標準偏差	5 %点	25 %点	50 %点	75 %点	95 %点
増加個体数 1999	593	254	204	422	579	746	1032
増加個体数 2000	646	262	240	470	633	805	1097
増加個体数 2001	697	294	234	498	686	879	1193
増加個体数 2002	716	307	230	516	706	905	1229
増加個体数 2003	651	305	163	451	641	845	1165
増加個体数 2004	756	326	240	540	747	960	1306
増加個体数 2005	700	349	143	469	693	920	1279
増加個体数 2006	732	354	167	502	725	956	1317
増加個体数 2007	994	369	413	753	977	1217	1622
増加個体数 2008	1037	373	443	786	1024	1274	1664
増加個体数 2009	992	405	360	719	977	1254	1668
増加個体数 2010	1044	410	407	770	1029	1292	1730
増加個体数 2011	791	424	169	519	752	1022	1536

表3-3 自然増加率の推定値の要約

変数	平均	標準偏差	5 %点	25 %点	50 %点	75 %点	95 %点
自然増加率 1999	1.1962	0.0864	1.0615	1.1357	1.1915	1.2528	1.3446
自然増加率 2000	1.1961	0.0842	1.0669	1.1375	1.1913	1.2513	1.3408
自然増加率 2001	1.1915	0.0868	1.0575	1.1312	1.1871	1.2465	1.3422
自然増加率 2002	1.1798	0.083	1.0502	1.1223	1.1754	1.2326	1.3245
自然増加率 2003	1.1521	0.0761	1.034	1.0987	1.1485	1.2014	1.2832
自然増加率 2004	1.1698	0.0805	1.0456	1.1141	1.1646	1.2211	1.3088
自然増加率 2005	1.149	0.0806	1.0265	1.0931	1.1429	1.1999	1.2918
自然増加率 2006	1.1508	0.079	1.0298	1.0967	1.1466	1.2003	1.2859
自然増加率 2007	1.2043	0.0866	1.0716	1.1427	1.1984	1.2613	1.3562
自然増加率 2008	1.2002	0.0843	1.0719	1.1399	1.1943	1.2553	1.3471
自然増加率 2009	1.1877	0.0874	1.0573	1.1247	1.1820	1.2428	1.3422
自然増加率 2010	1.1988	0.0862	1.0668	1.1384	1.1942	1.2558	1.3456

表3-4 環境収容力、目撃係数、糞塊係数、狩猟捕獲率、有害捕獲率の推定値の要約

変数	平均	標準偏差	5 %点	25 %点	50 %点	75 %点	95 %点
環境収容力	173.7	165.7	53.6	82.0	124.6	204.4	453.3
糞隗係数	4.4070	1.0850	2.6910	3.6580	4.3580	5.1000	6.2300
目撃係数(2001以前)	0.2420	0.0741	0.1350	0.1890	0.2340	0.2840	0.3740
目撃係数(2002 以降)	0.1210	0.0302	0.0740	0.0998	0.1190	0.1400	0.1720
狩猟捕獲率(2009以前)	0.0640	0.0154	0.0396	0.0534	0.0634	0.0738	0.0905
狩猟捕獲率(2010 以降)	0.3470	0.1300	0.1740	0.2540	0.3250	0.4160	0.6010
有害捕獲率(2009以前)	0.0563	0.0162	0.0331	0.0455	0.0548	0.0653	0.0836
有害捕獲率(2010 以降)	0.1420	0.0726	0.0618	0.0937	0.1250	0.1720	0.2820

表 3 - 5 個体数の将来予測 A: 毎年 800 頭捕獲した場合 B: 毎年 1000 頭捕獲した場合 C: 毎年 1500 頭捕獲した場合

変数	平均	標準偏差	5 %点	25 %点	50 %点	75 %点	95 %点
個体数_A2011	4632	1613	2669	3500	4307	5402	7740
個体数_A2012	3716	1814	1445	2438	3371	4611	7173
個体数_A2013	2912	2121	184	1381	2524	3982	6974
個体数_A2014	2740	2481	0	836	2201	3978	7616
個体数_A2015	2628	2881	0	195	1853	3992	8339
個体数_A2016	2591	3342	0	0	1411	4000	9195
個体数_A2017	2630	3893	0	0	878	4032	10415
個体数_A2018	2740	4555	0	0	245	4068	11867
個体数_B2011	4632	1613	2669	3500	4307	5402	7740
個体数_B2012	3716	1814	1445	2438	3371	4611	7173
個体数_B2013	2912	2121	184	1381	2524	3982	6974
個体数_B2014	2566	2453	0	636	2001	3778	7416
個体数_B2015	2304	2786	0	0	1415	3560	7896
個体数_B2016	2143	3154	0	0	697	3285	8503
個体数_B2017	2075	3599	0	0	0	2981	9413
個体数_B2018	2086	4147	0	0	0	2625	10526
個体数_C2011	4632	1613	2669	3500	4307	5402	7740
個体数_C2012	3716	1814	1445	2438	3371	4611	7173
個体数_C2013	2912	2121	184	1381	2524	3982	6974
個体数_C2014	2158	2363	0	136	1501	3278	6916
個体数_C2015	1619	2495	0	0	314	2470	6832
個体数_C2016	1295	2622	0	0	0	1490	6811
個体数_C2017	1122	2818	0	0	0	330	6863
個体数_C2018	1039	3122	0	0	0	0	6963

表3-6 増加個体数の将来予測 A:毎年800 頭捕獲した場合 B: 毎年1000 頭捕獲した場合 C: 毎年1500 頭捕獲した場合

変数	平均	標準偏差	5 %点	25 %点	50 %点	75 %点	95 %点
増加個体数_A2011	806	426	204	527	755	1029	1564
増加個体数_A2012	685	457	120	373	600	903	1529
増加個体数_A2013	571	516	6	205	448	788	1536
増加個体数_A2014	554	608	0	115	390	785	1685
増加個体数_A2015	545	713	0	19	320	783	1844
増加個体数_A2016	544	829	0	0	238	780	2021
増加個体数_A2017	553	953	0	0	140	777	2231
増加個体数_A2018	568	1080	0	0	37	775	2449
増加個体数_B2011	806	426	204	527	755	1029	1564
増加個体数_B2012	685	457	120	373	600	903	1529
増加個体数_B2013	571	516	6	205	448	788	1536
増加個体数_B2014	524	601	0	86	355	747	1643
増加個体数_B2015	487	693	0	0	243	702	1756
増加個体数_B2016	464	793	0	0	113	646	1886
増加個体数_B2017	453	901	0	0	0	583	2031
増加個体数_B2018	452	1013	0	0	0	510	2193
増加個体数_C2011	806	426	204	527	755	1029	1564
増加個体数_C2012	685	457	120	373	600	903	1529
増加個体数_C2013	571	516	6	205	448	788	1536
増加個体数_C2014	452	578	0	15	266	653	1543
増加個体数_C2015	359	633	0	0	53	499	1551
增加個体数_C2016	301	690	0	0	0	302	1560
増加個体数_C2017	268	756	0	0	0	60	1571
增加個体数_C2018	250	830	0	0	0	0	1586

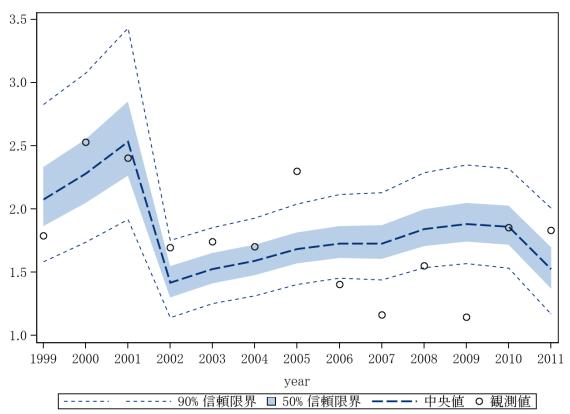


図2-1 目撃効率の観測値と期待値との関係

中央値と50%信頼限界、90%信頼限界を示す

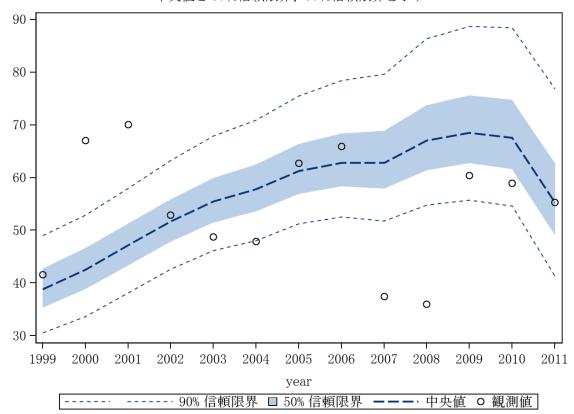


図2-2 糞塊密度の観測値と期待値との関係

中央値と50%信頼限界、90%信頼限界を示す

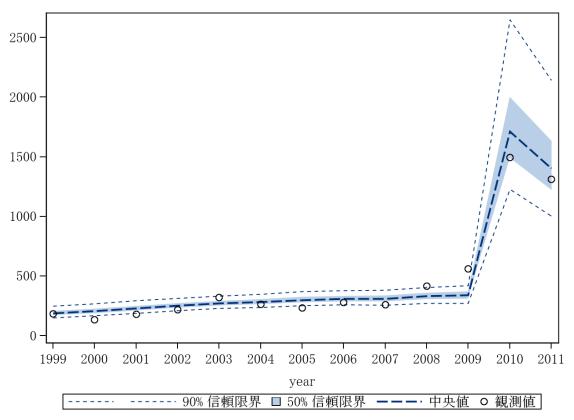


図2-3 狩猟捕獲数の観測値と期待値との関係

中央値と50%信頼限界、90%信頼限界を示す

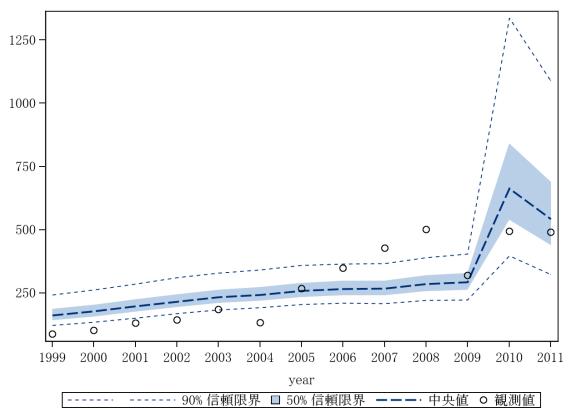


図2-4 有害捕獲数の観測値と期待値との関係

中央値と50%信頼限界、90%信頼限界を示す

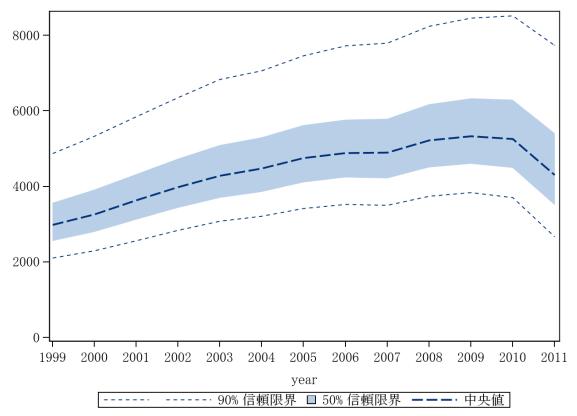


図3 兵庫県淡路島のニホンジカの推定生息個体数

中央値と50%信頼限界、90%信頼限界を示す

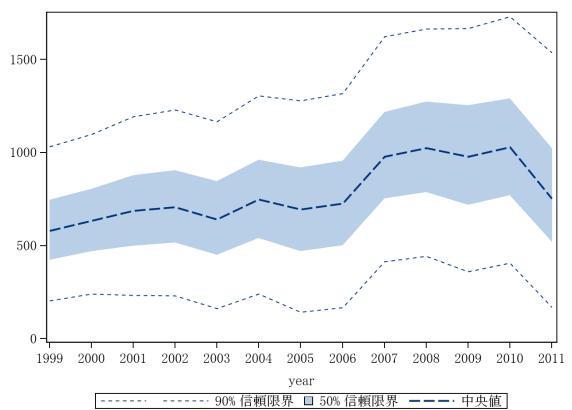


図4 兵庫県淡路島のニホンジカの推定増加個体数

中央値と50%信頼限界、90%信頼限界を示す

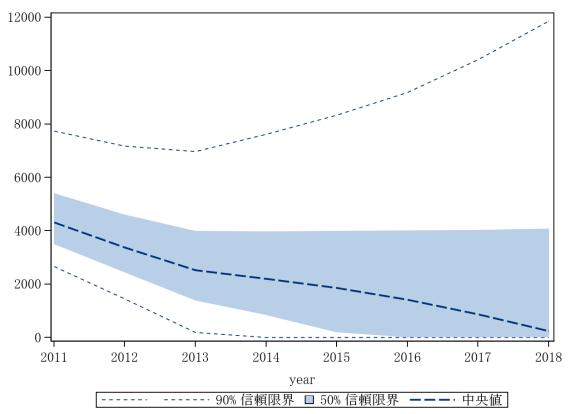


図 5 - 1 兵庫県淡路島の個体数の将来予測(毎年 800 頭捕獲した場合) 中央値と 50%信頼限界、90%信頼限界を示す

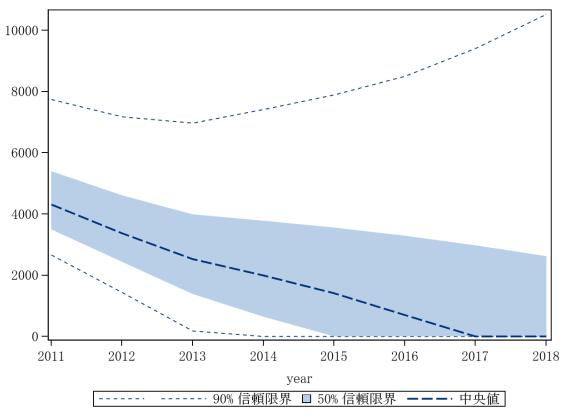


図5-2 兵庫県淡路島の個体数の将来予測(毎年1,000 頭捕獲した場合) 中央値と50%信頼限界、90%信頼限界を示す

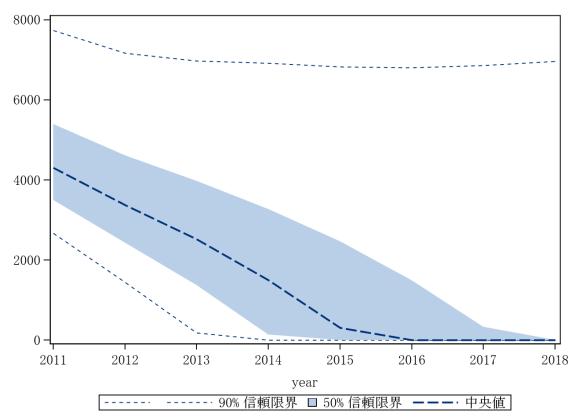


図5-3 兵庫県淡路島の個体数の将来予測(毎年1,500頭捕獲した場合) 中央値と50%信頼限界、90%信頼限界を示す

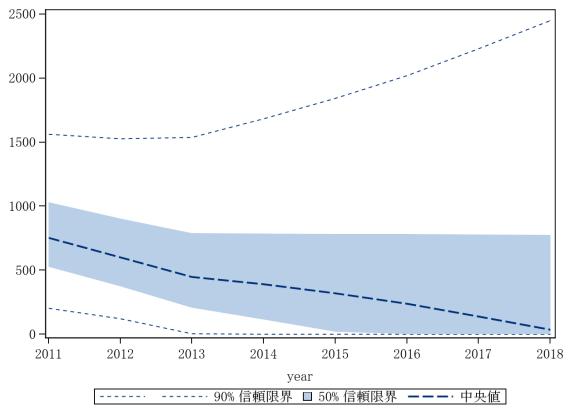


図6-1兵庫県淡路島の増加個体数の将来予測(毎年800頭捕獲した場合) 中央値と50%信頼限界、90%信頼限界を示す

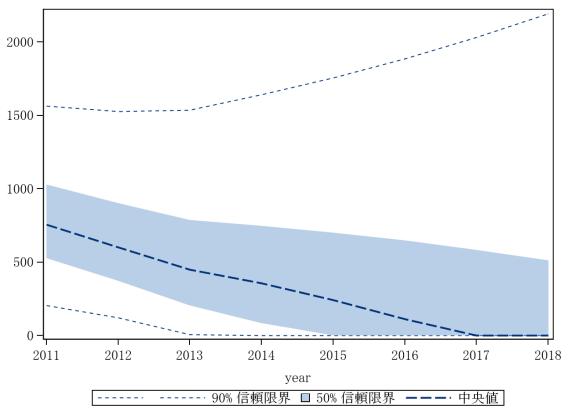


図 6 - 2 兵庫県淡路島の増加個体数の将来予測(毎年 1,000 頭捕獲した場合) 中央値と 50%信頼限界、90%信頼限界を示す

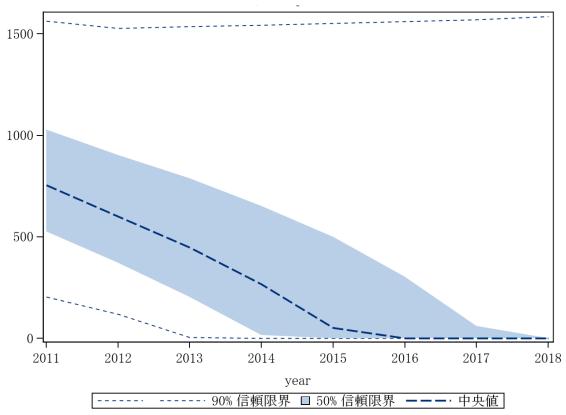


図6-3 兵庫県淡路島の増加個体数の将来予測(毎年1,500頭捕獲した場合) 中央値と50%信頼限界、90%信頼限界を示す

謝辞

本研究の一部は、環境省の環境研究総合推進費(D-1003)により実施された。

引用文献

- GewekeJ1992Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments. In Bayesian Statistics 4 (Bernardo JM, Berger JO, Dawid AP, Smith AFM, eds), pp.169-193, Oxford Univ Press, Oxford.
- Gilks WR, Richardson S, Spiegelhalter D1996Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, New York, USA, 512pp.
- Itoh T 1986 Population trend of Sika deer on Kinkazan Island. Honyurui Kagaku (Manmalian Science) 53: 29-31
- Kaji K, Okada H, Yamanaka M, Matsuda H, Yabe T 2004 Irruption of a Colonizing Sika Deer Population Wildlife Management 68: 889-899
- 環境省自然環境局生物多様性センター2011 平成 22 年度自然環境保全基礎調査特定哺乳類生息状況調査及び調査体制構築検討業務報告書. pp.185-195
- Kass RE, Carlin BP, Gelman A, Neal RM 1998 Markov Chain Monte Carlo in Practice: A Roundtable Discussion. The American Statistician 52: 93-100
- Roberts GO, Gelman A, Gilks WR 1997 Weak convergence and optimal scaling of random walk Metropolis algorithms. Annuals of Applied Probabity 7: 110-120
- 岸本康誉,関香菜子,坂田宏志, 2012 ニホンジカの個体群動態の推定と将来予測(兵庫県淡路島 2011 年) 兵庫ワイルドライフレポート 1: 17-3131
- SAS Institute Inc. 2011 SAS/STAT® 9.3 User's Guide. SAS Institute Inc., Cary, NC.